
Principles of Communications ECS 332

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

4.2 Energy and Power

Office Hours:

Check Google Calendar on the course website.

Dr.Prapun's Office:

6th floor of Sirindhralai building, BKD

Review: Energy and Power

- Consider a signal g(t).
- Total (normalized) energy:

 Parseval's Theorem [2.43]

[Defn. 4.13]
$$E_{g} = \int_{-\infty}^{\infty} |g(t)|^{2} dt = \lim_{T \to \infty} \int_{-T}^{T} |g(t)|^{2} dt = \int_{-\infty}^{\infty} |G(f)|^{2} df.$$

• Average (normalized) **power**:

[Defn. 4.15]
$$P_{g} = \langle |g(t)|^{2} \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^{2} dt = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |g(t)|^{2} dt.$$
time-average operator
[Defn. 4.16a]

Power Calculation: Special Cases

Linear combination of complex exponential functions [4.23]

Linear combination of sinusoids
[4.28]

g(t)	$P_g = \langle g(t) ^2 \rangle$
$\sum_{k} c_k e^{j2\pi f_k t}$ where the f_k are distinct	$\sum_{k} c_k ^2$
$\sum_{k} A_k \cos(2\pi f_k t + \phi_k)$ where the f_k are positive and distinct	$\frac{1}{2} \sum_{k} A_k ^2$